Product Description

Zinc-Plated Engineering Industrial Agricultural Chain with Attachment
 

Product Description


1. Material: Alloy steel & Stainless steel
2. Surface treatment: Shot peening / Zinc-plated / Nickel-plated / Dacromet-plated
3. Characteristic: Chain plate hole finally passed ball extrusion to ensure maximum fatigue resistance, parts of shot peening treatment makes the chain and the sleeve has a higher fatigue strength.
 

Materials Available  1. Stainless Steel: SS304, SS316, etc
2. Alloy Steel: 45Mn, 42CrMo, etc
3. OEM according to your request
Surface Treatment Shot peening, Polishing, Oxygenation, Blackening, Zinc-plated, Nickel-plated, Anodized, etc.
Characteristic Fire Resistant, Oil Resistant, Heat Resistant
Application Agricultural machine
Design criterion ISO DIN ANSI & Customer’s Drawing
Size Customer’s Drawing & ISO standard 
Package Wooden Case / Container and pallet, or made-to-order
Certificate ISO9001: 2008 
Advantage First quality, best service, competitive price, fast delivery
Delivery Time 20 days for samples. 45 days for official order.

 

Detailed Photos


View more products,please click here…

 

Company Profile

Material: Alloy/Carbon Steel
Sample: for Free
Transport Package: Plastic Bag+Carton Box+Plywood Case
Specification: S55K1, S62A2K1
Trademark: made-to-order
Origin: China
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

engineering chain

How do engineering chains compare to other types of chains in terms of efficiency?

Engineering chains are known for their high efficiency in power transmission compared to some other types of chains. Their efficiency can be attributed to several factors:

  • Minimal Friction: Engineering chains are designed with precision rollers and bushings, which reduces friction between the chain’s components. This results in less energy loss during power transmission.
  • High-Quality Materials: These chains are typically made from high-quality materials, such as alloy steel, which ensures durability and minimal elongation under heavy loads. This material choice helps maintain efficiency over extended periods of use.
  • Precise Manufacturing: Engineering chains are manufactured with tight tolerances and precise engineering, ensuring consistent performance and smooth operation. This precision minimizes energy losses due to chain misalignment or uneven loading.
  • Optimized Design: The design of engineering chains takes into account the specific requirements of power transmission, making them well-suited for their intended applications. This optimized design contributes to their overall efficiency.
  • Proper Lubrication: Regular and proper lubrication of engineering chains is essential to maintain their efficiency. Adequate lubrication reduces friction and wear, optimizing power transfer efficiency.

Compared to some other types of chains, such as standard roller chains, engineering chains may offer higher efficiency due to their advanced design and manufacturing processes. However, the choice of chain type depends on the specific application requirements, load conditions, operating environment, and other factors.

In certain applications, other power transmission methods like belts or gears might be preferred over chains, based on factors such as noise level, space constraints, and maintenance considerations. Each power transmission method has its advantages and limitations, and selecting the most suitable option requires careful consideration of the application’s needs.

engineering chain

What are the factors to consider when selecting an engineering chain for an application?

When selecting an engineering chain for a specific application, several important factors should be taken into consideration:

1. Load Capacity: Determine the maximum load the chain will need to handle in the application. It’s crucial to select a chain with a sufficient load-carrying capacity to ensure safe and reliable operation.

2. Speed: Consider the operating speed of the application. High-speed applications may require special engineering chains designed to handle increased centrifugal forces and reduce wear.

3. Environmental Conditions: Evaluate the environmental factors the chain will be exposed to, such as temperature, humidity, corrosive substances, and contaminants. Choose chains with suitable materials and coatings to withstand these conditions.

4. Lubrication: Determine the lubrication requirements of the chain. Some chains may require regular lubrication, while others are designed to operate with minimal or no additional lubrication.

5. Alignment and Tension: Ensure proper alignment and tensioning of the chain to prevent premature wear and elongation, which can lead to chain failure.

6. Space Limitations: Consider the available space for the chain in the application. Some environments may require compact chain designs to fit within tight spaces.

7. Application Type: Different types of engineering chains are available, each designed for specific applications, such as conveyor systems, power transmission, lifting equipment, or agricultural machinery. Select a chain type that aligns with the application’s requirements.

8. Maintenance: Evaluate the maintenance capabilities of the application. Some chains may require frequent maintenance, while others offer extended maintenance intervals.

9. Cost: Consider the budget for the chain. While cost is important, it’s essential to balance it with the chain’s quality and performance to ensure long-term reliability and reduced downtime.

10. Manufacturer and Quality: Choose engineering chains from reputable manufacturers known for producing high-quality and reliable products.

By carefully considering these factors, engineers and operators can select the most suitable engineering chain for their specific application, ensuring optimal performance, longevity, and safety.

engineering chain

What is an engineering chain and what are its uses in various industries?

An engineering chain, also known as an industrial chain, is a type of power transmission chain widely used in various industries for transmitting mechanical power between two or more rotating shafts. It consists of a series of interconnected links that form a flexible and durable mechanism capable of handling heavy loads and harsh operating conditions. Here are its uses in different industries:

1. Manufacturing Industry:

In the manufacturing sector, engineering chains are employed in conveyor systems for material handling, assembly lines, and automated production processes. They facilitate the movement of raw materials, workpieces, and finished products efficiently, streamlining production and reducing manual labor.

2. Automotive Industry:

Automotive manufacturing relies heavily on engineering chains for conveying car parts during assembly. From the production of engines to body assembly, these chains ensure a smooth and continuous flow of components through the manufacturing process.

3. Agriculture and Farming:

In the agricultural sector, engineering chains are used in machinery such as tractors and combine harvesters. They facilitate power transmission from the engine to different agricultural implements, enabling various tasks like plowing, seeding, and harvesting.

4. Construction and Mining:

Construction equipment and mining machinery utilize engineering chains for heavy-duty power transmission. These chains are suitable for harsh environments and high-load applications, making them ideal for conveying construction materials and excavating operations.

5. Oil and Gas Industry:

In the oil and gas sector, engineering chains are utilized in drilling rigs and oil extraction equipment. They assist in the rotation of drill bits and the transfer of power within complex drilling systems.

6. Food and Beverage Industry:

Engineering chains find applications in food processing and beverage manufacturing, where they are used in conveyor systems for handling ingredients, packaging, and bottling processes. Specialized food-grade chains are designed to meet strict hygiene standards.

7. Material Handling:

Across various industries, engineering chains are widely employed in material handling systems, including overhead cranes, hoists, and elevators. They ensure smooth and efficient movement of heavy loads in warehouses, distribution centers, and manufacturing facilities.

8. Pulp and Paper Industry:

In the pulp and paper industry, engineering chains are used in paper processing machines, pulp digesters, and paper converting equipment. They contribute to the continuous flow of paper products during manufacturing.

9. Renewable Energy:

In the renewable energy sector, engineering chains are utilized in wind turbines and solar tracking systems. They assist in adjusting the position of solar panels and wind turbine blades to optimize energy capture.

10. Power Generation:

In power plants, engineering chains are used in various equipment, including conveyor systems for transporting fuel and ash, as well as in boiler feed systems and other power generation processes.

11. Water and Wastewater Treatment:

Engineering chains are employed in water treatment plants for sludge dewatering and in wastewater treatment plants for handling sludge and screenings.

12. Textile Industry:

In textile machinery, engineering chains assist in the production process, including spinning, weaving, and fabric handling.

13. Printing Industry:

In printing presses, engineering chains facilitate the smooth movement of paper during the printing process.

14. Packaging Industry:

Engineering chains are utilized in packaging machinery for handling boxes, cartons, and other packaging materials.

Overall, engineering chains are versatile components that play a crucial role in various industries for power transmission and material handling applications. They provide reliability, durability, and efficiency, making them an essential part of modern industrial processes.

China Professional Zinc-Plated Engineering Industrial Agricultural Chain with Attachment  China Professional Zinc-Plated Engineering Industrial Agricultural Chain with Attachment
editor by CX 2023-12-08